Миниатюрный преобразователь 12 в 220 вольт

Приветствую, радиолюбители-самоделкины!

Люди, далёкие от электроники просто включают электроприбор в розетку сети 220 В и не задумываются, что происходит с этим напряжением в дальнейшем, уже в корпусе электроприбора. Так, можно подумать, что для питания электроники используются те самые 220 В — но на самом деле это далеко не всегда так. Конечно, есть примеры бытовых приборов, в которых действительно напряжение из розетки в «чистом виде» поступает на какой-то активный компонент, например, многие электромоторы работают напрямую от 220 В, в мясорубках, миксерах, блендерах, кофемолках и т.д. Но чаще всего внутри устройства стоит блок питания, который может быть трансформаторным либо импульсным, на его вход поступают те самые 220 В, которые затем понижаются до необходимого уровня — чаще всего это 3,3, 5, 9 либо 12 В, именно от таких напряжений питаются большая часть электронных схем. В некоторых случаях блоки питания требуются мощные, при этом они уже выступают в роли отдельного блока — например, отдельный блок питания можно увидеть в составе компьютера, их мощности обычно варьируются в пределах от 300 ватт до целого киловатта и больше, если речь идёт об особо мощных компьютерах. И если с преобразованием напряжения с 220 до более низкого уровня проблем обычно не возникает, ведь в продаже существуют большое число готовых и недорогих как трансформаторных, так и импульсных блоков питания, то вот с обратным преобразованием с низкого постоянного напряжения до 220 В иногда возникают проблемы, ведь схемы в этом случае будут уже не такими тривиальными. В этой статье речь пойдёт о создании как раз такого преобразователя, который с 12 В на входе может выдать полноценные 220 В на выходе с приличной мощностью до нескольких сотен ватт.

Как можно увидеть, основой её является микросхема TL494 — ШИМ контроллер, который формирует прямоугольные импульсы. Эта микросхема довольно популярна, на ней строят многие импульсные блоки питания, на схеме можно увидеть список аналогов данной микросхемы, которые можно использовать. Рассмотрим общий принцип работы схемы. На вход поступает постоянное напряжение 12 В, которое берётся, например, от автомобильного аккумулятора или бортовой сети, это напряжение питает микросхему TL494, которая формирует определённым образом прямоугольные импульсы. 9 и 10 выводы микросхемы — выходы для сигналов, в данном случае она работает в двухтактном режиме, поэтому задействованы два выхода. Напрямую к выходам подключаются затворы мощных полевых транзисторов, которые коммутируют первичную обмотку мощного импульсного трансформатора, транзисторов два и обмотка состоит из двух одинаковых частей — данная схема включения называется пуш-пул, что можно перевести как «тяни-толкай». Транзисторы буквально «раскачивают» первичную обмотку с высокой частотой, в несколько десятков килогерц. Трансформатор имеет во вторичной обмотке витков больше, чем в первичной, соответственно работать он будет в качестве повышающего — со вторичной обмотки снимаются все 220 В. Но при этом стоит учитывать, что в розетке напряжение переменное и его частота равна 50 Гц — здесь же напряжение также переменное, но с частотой уже гораздо более высокой (несколько десятков килогерц), а это может быть критично при питании некоторых приборов от такого преобразователя. К выходу высоковольтной части преобразователя можно подключить выпрямитель — он показан в самой правой части схемы схемы, состоит из пары быстрых диодов HER307, а также пары электролитических конденсаторов большой ёмкости, служащих для подавления пульсаций — с выхода этого преобразователя можно снимать уже постоянное напряжение, его амплитуда будет даже несколько больше, чем 220 В. Обратите внимание, что использовать в выпрямители обычные не быстродействующие диоды, например популярные 1N4007, не рекомендуется — они будут не эффективны на высоких частотах и будут нагреваться. Подойдут практически любые ультра-быстрые диоды, рассчитанные на ток как минимум 1 А, те же UF4007. Конденсаторы ёмкостью чем больше, тем лучше — минимальная ёмкость 200 мкФ для каждого, она указана на схеме. Если подключаемая нагрузка не критична к пульсациям и высокой частоте и небольшой мощности, то на ёмкости можно сэкономить, но если планируется выжимать из преобразователя максимум мощности, лучше поставить больше — нарастить ёмкость можно параллельным включением конденсаторов. Напряжение — как минимум 200 вольт для каждого из конденсаторов, можно больше.

Элементы C2 и R2 задают рабочую частоту преобразователя, то есть частоту генерации микросхемы TL494. В качестве С2 можно использовать плёночный конденсатор, либо высокочастотный керамический, конденсатор должен быть качественным, чтобы частота не плавала в зависимости от температуры или «усталости» конденсатора. Указанные на схеме номиналы данных элементов подойдут в общем случае, но если в работе преобразователя будут замечены недочёты, например, будут самопроизвольно сгорать полевые транзисторы, слишком большой ток холостого хода (без подключенной нагрузка), либо если преобразователь не будет отдавать всю мощность, то можно заменить R2 на миниатюрный подстроечный и подстроить частоту для достижения максимального КПД. Увеличение ёмкости конденсатора приведёт к снижению рабочей частоты, повышение сопротивление резистора также позволит снизить частоту, и соответственно наоборот.

Микросхему при сборке желательно установить в панельки — это позволит в дальнейшем использовать её в других проектах, если преобразователь станет не нужен, к тому же при первом включении и наладке всегда есть небольшой шанс случайно вывести её из строя из-за неправильной сборки. Транзисторы в схеме можно использовать практически любые полевые — лучше, если они будут рассчитаны на большой максимальный ток, а также будут обладать низким сопротивлением открытого канала — это два фактора в первую очередь определяют, будут ли транзисторы нагреваться при длительной работы преобразователя. Например, отлично подойдут мощные IRF3102, RFZ44N, IRFZ46N, IRFZ48N. При работы транзисторы не должны сильно нагреваться — разве что если подключать слишком мощную нагрузку, поэтому радиаторы даже не потребуются. Но для надёжности установить небольшие радиаторы вовсе не будет лишним — повысится надёжность устройства. При монтаже радиаторов на плату следует учитывать, что фланец полевого транзистора является его коллектором, коллекторы транзисторов не должны соединяться, поэтому нужно предусмотреть два небольших индивидуальных радиатора, либо использовать изолирующие прокладки.

Трансформатор для данной схемы требуется импульсный — без переделок подойдёт практически любой трансформатор из компьютерного блока питания, несмотря на небольшие размеры, он может работать с приличной мощностью. Чем мощнее будет донорский компьютерный блок питания (можно использовать даже нерабочий), тем соответственно мощнее там будет стоять трансформатор, значит и мощнее будет собранный преобразователь. В компьютерном блоке питания этот трансформатор используется в качестве понижающего — высокоомная обмотка является первичной, здесь же он будет включен наоборот, повышая 12 вольт в 220.

Проверенный рисунок платы для данного преобразователя представлен выше. При разводке платы следует учитывать, что в цепи питания преобразователя 12 В будет протекать значительный ток, до нескольких десятков ампер, а потому эти дорожки нужно делать максимально широкими, не лишним будет также обильно пролудить, либо параллельно проложить отрезки медной проволоки. Плату можно изготовить методом ЛУТ — инструкций предостаточно в открытом доступе.

Как можно увидеть, размеры получившейся конструкции весьма небольшие, а потому её можно поместить в миниатюрный корпус и хранить, например, в машине. Обратите внимание, что преобразователь не имеет защиты от короткого замыкания или перегрузки, поэтому не лишним будет установить на входе питания схемы предохранитель, номинал которого будет зависеть от планируемой нагрузки. Данный преобразователь является импульсным высокочастотным и может отдавать на выход либо постоянное напряжение, либо высокочастотное импульсное, а потому не может полностью заменить розетки со стандартной частотой 50 Гц, которая подходит абсолютно для всех приборов. Зато от такого нагревателя можно запитать любую резистивную нагрузку, будь то лампочки или ТЭНы. Удачной сборки!

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Подборки: Преобразователь Схема Плата Электроника 220 вольт

Источник: usamodelkina.ru

Понравилась статья? Поделиться с друзьями:
KIA